If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-27x-108=0
a = 2; b = -27; c = -108;
Δ = b2-4ac
Δ = -272-4·2·(-108)
Δ = 1593
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1593}=\sqrt{9*177}=\sqrt{9}*\sqrt{177}=3\sqrt{177}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-3\sqrt{177}}{2*2}=\frac{27-3\sqrt{177}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+3\sqrt{177}}{2*2}=\frac{27+3\sqrt{177}}{4} $
| 7x+x^2=-6 | | 3^4(n)=3 | | 5=n-(-8) | | 4x3/2–100=400 | | 2/30=6/x | | 2x+1/4=35 | | 10-1+3x-3+18=39 | | 81^n=3 | | 5x+1.4=16.4 | | x+0.06x=296.8 | | 6y=5+3y | | 4×x+35=115 | | 16/25x^2+1=0 | | 4(12-6z)=72 | | -5=-3/2(2)+b | | 6x^2=70 | | 20=5(x-10) | | y(5y-12)=17 | | x+(x+2)+(x+4)+(x+6)=4x+12=212 | | x²+11x=21 | | 7x+4=2x-1/3 | | (x+9)*3=2x+17 | | 17-z=14 | | 3a+3a+1683=0 | | 2=3/5(-5)+b | | 3a^2+3a+1683=0 | | 8(x-4)+9=24 | | 2=12x=2+x | | 1/2(2x+8)+9=6 | | 23x+13x+11=8 | | 7x-3x=+24 | | 60/x=40/72 |